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The structures of tilted perovskites in each of the 15 tilt

systems have been decomposed into the amplitudes of

symmetry-adapted modes in order to provide a clear and

unambiguous definition of the tilt angles. A full expression in

terms of the mode amplitudes for the ratio of the volumes of

the two polyhedra within the perovskite structure for each of

the 15 tilt systems is derived, along with more general

expressions in terms of either mode amplitudes or tilt angles

that can be used to estimate this ratio when the distortions of

the octahedra are small.
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1. Introduction

The ABX3 perovskite structure is adopted by minerals of

geological importance and many materials with industrial

utility. For example, (Mg,Fe)SiO3 perovskite is the predomi-

nant phase in the Earth’s lower mantle (Ringwood, 1962; Reid

& Ringwood, 1975; Liu, 1976; Mao et al., 1977), BaTiO3 and

PbTiO3 are important ferroelectrics (e.g. Cohen, 1992), and

most high-temperature superconductors are derivatives of the

perovskite structure (e.g. Uher, 1990) with an example of

MgCxNi3 being an intermetallic perovskite superconductor

(He et al., 2001). Understanding the relationship between

structure, structural variation and thermodynamic properties

in perovskites is therefore of importance and utility in many

fields.

The ABX3 perovskite structure comprises a three-dimen-

sional framework of corner-linked BX6 octahedra with A

cations occupying the cavities within the framework. In the

ideal cubic perovskite structure with space group Pm�33m the A

cations are 12-coordinated, forming AX12 coordination

cuboctahedra. When the A cations are not large enough for

the cavities within the framework, the relatively rigid BX6

octahedra tilt to reduce the size of the cavities occupied by the

A cations (Megaw, 1966). Subsequent analysis (e.g. Glazer,

1972; Howard & Stokes, 1998, 2002) has shown that there are

15 symmetrically distinct tilt systems in perovskites that can be

parameterized in terms of the tilts of the octahedra around the

three mutually perpendicular tetrad axes of the cubic struc-

ture. The tilts of consecutive octahedra along each of the three

axes can either be of the same sign and magnitude, or of

opposite sign but the same magnitude. This leads to the

description of the thermodynamics of phase transitions

involving changes in the tilting patterns in terms of two three-

dimensional order parameters representing the two types of

tilts along each of these three axes (e.g. Howard & Stokes,

2004). Successful analysis of the thermodynamics of perov-

skite phase transitions involving tilting (Carpenter et al., 2005,



2010; Carpenter, 2007) has demonstrated that the tilt angles

around the pseudo-cubic axes are indeed thermodynamic

order parameters.

The ratio of the volume of the AX12 coordination cub-

octahedron to that of the BX6 octahedron, VA/VB, is equal to 5

in the cubic aristotype structure, and decreases with increasing

tilting of the octahedra in the hettotype structures (e.g.

Avdeev et al., 2007). The relative compressibilities and thermal

expansivities of the two polyhedra therefore control whether a

given perovskite structure becomes more or less tilted with

changes in pressure or temperature (Andrault & Poirier, 1991;

Zhao et al., 2004; Angel et al., 2005). In particular, because

perovskite structures uniformly become less tilted (on

average) with increasing temperature, the compressional

behavior of the polyhedra determines the phase diagram for

tilt transitions in perovskites (Angel et al., 2005). When the

BX6 octahedra are less compressible than the AX12 sites the

tilts increase with pressure within a single phase, and when tilt

transitions occur they do so to structures with greater tilts and

lower symmetry, giving the phase transition boundary a

positive slope dP/dT. Conversely, when the BX6 octahedra are

softer than the AX12 sites, tilting decreases with increasing

pressure, and tilt transitions occur to less tilted structures with

higher symmetry through a phase transition boundary with

dP/dT < 0 (Angel et al., 2005). Thus, the polyhedral volume

ratio of perovskites, VA/VB, and its change with pressure and

temperature, is also an important thermodynamic parameter

which must be linked to the values of tilt angles as the primary

order parameters for tilt transitions.

Calculation of the tilt angles and the polyhedral volume

ratio from experimentally determined perovskite structures is

therefore of critical importance for understanding and char-

acterizing the thermodynamics of perovskites. However,

except for structures in the three simplest tilt systems and the

trivial case of the cubic aristotype, the octahedra are permitted

by symmetry to become distorted in such a way that affects the

tilt angles and the polyhedral volume ratio. Thomas (1996,

1998) proposed a method to quantitatively describe all

perovskite structures by a few length and angle parameters.

Three of the angle parameters were defined as the angles

between BX6 octahedral stalks which connect opposite octa-

hedral vertices, and the corresponding closest pseudo-cubic

axes. However, these angles do not correspond to the three tilt

angles around the pseudo-cubic axes, especially in tilt systems

with three tilts, and they include the distortions of the octa-

hedra as well. Tamazyan & van Smaalen (2007) proposed

another geometric parameterization of perovskite structures

where the orientation of BX6 octahedra is described by two

rotation angles around the z axis and an axis in the xy plane in

a direction defined by a third angle. As the orientation of the

octahedra is defined by only two rotation axes and the second

one is not necessarily the x or y axis, this description is not

aimed at the quantification of the tilts around the three

pseudo-cubic axes. Furthermore, as illustrated by these two

examples, the decomposition of a perovskite structure

including tilted and distorted octahedra by geometric analysis

does not result in an unambiguous definition of the Glazer

(1972) tilts and the problem is more acute in perovskites with

lower space-group symmetries (Avdeev et al., 2007). As a

consequence, Avdeev et al. (2007) provided expressions for

the polyhedral volume ratios as direct functions of the frac-

tional coordinates of the anions in each of the perovskite

space groups. However, except for the four simplest cases

mentioned above, unambiguous expressions for both the

Glazer tilts and their relationship to the VA/VB ratio are still to

be determined explicitly for each space group, and in a general

form.

In this paper we make use of the computer programs

ISOTROPY (Stokes et al., 2007) and ISODISTORT (or the

earlier ISODISPLACE; Campbell et al., 2006) to analyze

perovskite structures in terms of the irreducible representa-

tions of the space group of the parent structure (Perez-Mato et

al., 2010). Irreducible representations and symmetry-adapted

modes provide a clear and unambiguous way to separate the

effects of distortion and tilting of octahedra in perovskites

because the modes by definition are orthogonal to one

another. We decompose the coordinates in the explicit

expressions for VA/VB in the 15 tilt systems (Avdeev et al.,

2007) into symmetry-adapted mode amplitudes, to express

VA/VB as a direct function of the amplitudes of the modes that

measure the octahedral tilts and distortions. A comparison of

these expressions reveals a general formula that provides a

very close approximation to the value of VA/VB for all tilt

systems both in terms of the mode amplitudes and the values

of the Glazer (1972) tilts.

2. Symmetry-adapted mode analysis of perovskites

2.1. Previous studies

The perovskite structures were first systematically classified

by Glazer (1972) according to the different tilting patterns of

BX6 octahedra around the a, b and c axes of the cubic aris-

totype. Glazer restricted consideration to a simple and

common case where the octahedra along the rotation axis

rotate by the same angle in the same sense or in opposite

senses alternately, which are called ‘in-phase’ and ‘out-of-

phase’ tilts. By inspecting all combinations of in-phase and

out-of-phase tilts around the three pseudo-cubic axes by the

same or different angles, Glazer found 23 tilt systems and

assigned their space groups accordingly. Each tilt system was

denoted by a symbol a#b#c#, where # takes 0, + or � if there is

no tilt, or in-phase or out-of-phase tilt around the relevant

axis. While the analysis by Glazer (1972) greatly assisted in the

correct structural analysis of many perovskite systems, it left

three crucial issues unaddressed. First were the subtle

symmetry issues – whether the tilt systems with higher

symmetry between the tilts than required by the space-group

symmetry were really distinct tilt systems, and whether some

proposed tilt systems actually involved two tilts around a

single axis. Second, except in the case of three simple tilt

systems a�a�a�, a0a0c+ and a0a0c�, the calculation of the
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values of the tilts from atomic coordinates is neither well

defined nor unique. Related to that issue, in the majority of tilt

systems in which octahedral distortion is permitted by the

space-group symmetry, the separation of distortions and tilts

can be done in many ways resulting in different values for the

tilt angles.

All three of these issues were addressed by Howard &

Stokes (1998, 2002) who followed the description of tilting

patterns of perovskite by Glazer (1972) and analysed the tilts

in the context of the Landau theory of phase transitions

assisted by the computer program ISOTROPY (Stokes et al.,

2007). The octahedral rotations about the B cations are

represented by irreducible representations (irreps) whose

basis modes are sets of pseudo-vectors at Wyckoff a sites

where B cations are located. Because BX6 octahedra may tilt

in opposite senses alternately along the three pseudo-cubic

axes, the unit-cell dimensions of tilted perovskites can be at

most doubled compared with that of the cubic aristotype.

Thus, only irreps at special k-points � (0, 0, 0), X (0, 0, 1
2), M (1

2,
1
2, 0) and R (1

2,
1
2,

1
2) in the reciprocal space of the cubic aris-

totype need be considered. Of the possible irreps, Howard &

Stokes (1998, 2002) showed that the basis modes of two three-

dimensional irreps Mþ3 and Rþ4 (notation of Miller & Love,

1967) represent the two types of tilt patterns of the octahedra.

The in-phase tilt patterns b0b0a+, a+b0b0, b0a+b0 correspond to

the three basis modes of irrep Mþ3 , and different combinations

of these basis modes generate four tilt systems with only in-

phase tilts. Similarly, the three basis modes of irrep Rþ4
correspond to the out-of-phase tilt patterns b0b0a�, a�b0b0,

b0a�b0, and in various combinations generate the six tilt

systems with only out-of-phase tilts. Coupling of Mþ3 and Rþ4
results in 14 potential tilt systems, four of which belong to the

simple case Glazer (1972) considered where in-phase and out-

of-phase tilts do not coexist around any individual pseudo-

cubic axis. In all, this irrep analysis by Howard & Stokes (1998,

2002) identified 15 tilt systems including the cubic aristotype,

all of which were among the 23 tilt systems listed by Glazer.

The remaining eight tilt systems listed by Glazer are either a

special case of one of the 15 tilt systems or a complex case

where in-phase and out-of-phase tilts are allowed by the

symmetry to coexist around one pseudo-cubic axis;

details are provided by Howard & Stokes (1998,

2002).

Darlington (2002a,b) and Knight (2009) developed an

analysis that is essentially equivalent to that of using irreps, by

manually decomposing the tilted perovskite structures in

terms of condensed normal modes of the cubic aristotype. By

comparing the atomic displacements allowed by the space

group of tilted perovskites with the mode displacements

associated with X, M and R points, Knight (2009) identified

the modes condensed in the 15 tilted perovskite structures. For

each of the structures, he found as many modes as the internal

degrees of freedom and gave the equation relating the mode

amplitudes and the fractional coordinates as well as cell

dimensions. The equation for the perovskite structure with

a+b�b� tilting and space group Pbnm is quoted from Knight

(2009) as an example

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 �1

0 0 0 0 1 0 0

0 0 0 �1 0 1 0

0 0 0 1 0 1 0

0 0 �1 0 0 0 �1

0
BBBBBBBB@

1
CCCCCCCCA

d1

d2

d3

d4

d5

d6

d7

0
BBBBBBBB@

1
CCCCCCCCA
¼

au
� ffiffiffi

2
p

bv
� ffiffiffi

2
p

au1
� ffiffiffi

2
p

bv1
� ffiffiffi

2
pffiffiffi

2
p

au2ffiffiffi
2
p

bv2

cw2

0
BBBBBBBBB@

1
CCCCCCCCCA
:

ð1Þ

The parameters di are the mode amplitudes, which is the

distance of the independent displacement component of the

mode in length units (typically Å or nm). They are dependent

upon the a, b and c unit-cell dimensions of the Pbnm structure,

and the deviations u, v and w of the free fractional coordinates

of a set of symmetry-independent atoms from the ideal

coordinates corresponding to the cubic aristotype. Among the

seven mode amplitudes, d3 and d4 correspond to the Rþ4 and

Mþ3 modes inducing out-of-phase b�b� and in-phase a+ tilts.

Such decompositions explicitly isolate tilting from distortion

of the octahedra. The tilt angle around a pseudo-cubic axis can

then be calculated by the amplitude of the corresponding

octahedral tilt mode

’ ¼ arctan 2
N

V

� �1=3

d

 !
; ð2Þ

where ’ is the octahedral tilt angle around a pseudo-cubic axis,

d is the amplitude of the Mþ3 or Rþ4 mode associated with the

axis, V is the unit-cell volume of the tilted structure, and N is

the multiplicity of the unit cell compared with the cubic aris-

totype (Knight, 2009).

2.2. Mode analysis using ISOTROPY and ISODISTORT

ISOTROPY (Stokes et al., 2007) can be used to search for

displacive modes of A and X atoms in cubic perovskite and

provide a comparison with the results of Cowley (1964). Thus,

we searched for irreps at k-points X, M and R of space group

Pm�33m, carried by modes composed of vectors at Wyckoff b

and d sites occupied by A and X atoms. ISOTROPY found all

the irreps identified by Knight (2009) in the 15 tilted perov-

skite structures, for which the basis sets of vectors at Wyckoff

b or d sites shown by ISOTROPY suggest the same basis

modes as tabulated in Cowley (1964) and Knight (2009) except

for irrep Xþ5 . The six basis modes of irrep Xþ5 suggested by

ISOTROPY are linear combinations of those of Cowley’s

(Table 1). It can be easily deduced that the matrix describing

this linear relationship can also relate, by similarity transfor-

mation, the irrep matrix carried by ISOTROPY’s basis modes

and that carried by Cowley’s basis modes, for each symmetry

operation in the space group Pm�33m. The two sets of matrices

are actually equivalent irreps of Xþ5 according to the group

theory. Thus, the broad search for irreps using ISOTROPY

verifies all the irreps and their basis modes which have been

identified by Knight (2009) in the 15 tilted perovskite struc-

tures.

Given the parent structure, ISODISTORT (Campbell et al.,

2006) can decompose a distorted structure with lower
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symmetry into symmetry-adapted modes of macroscopic

strain, atomic displacement and site occupancy. For each

displacive mode condensed in the distorted structure,

ISODISTORT expresses the displacement directions of

affected atoms in terms of the directions in the supercell of the

symmetry-independent atoms, and hence can be used to relate

the mode amplitudes and the fractional coordinates in a form

similar to (1). Note that Knight (2009) incorporates unit-cell

dimensions a, b and c into the equations, so the resulting mode

amplitudes di depend on the cell dimensions. However,

ISODISTORT describes the superlattice deformation of the

distorted structure as macroscopic strain modes, so the

displacive modes are referred to the basis of the undeformed

superlattice which is an exact transformation of the cubic

lattice of the aristotype. Thus, the cell parameter changes of

the distorted structure are attributed to the strain modes and

the displacive mode amplitudes depend only on fractional

coordinates. For the displacive-mode decomposition of

perovskites, we can therefore round the cell dimensions a, b

and c in (1) to multiples of that of the cubic aristotype ap and

divide both sides of the equation by ap. After eliminating the

coefficients on the right-hand side, we have

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 �1

0 0 0 0 1 0 0

0 0 0 � 1
2 0 1

2 0

0 0 0 1
2 0 1

2 0

0 0 � 1
2 0 0 0 � 1

2

0
BBBBBBBB@

1
CCCCCCCCA

d01
d02
d03
d04
d05
d06
d07

0
BBBBBBBB@

1
CCCCCCCCA
¼

u

v

u1

v1

u2

v2

w2

0
BBBBBBBB@

1
CCCCCCCCA
; ð3Þ

where d0i = di/ap are clearly the mode amplitudes in terms of

only the changes of the fractional coordinates of the atoms

within the unit cell of the cubic aristotype, and do not incor-

porate the unit-cell deformation, so this form of mode

decomposition equation follows the separation between strain

and displacive modes in ISODISTORT.

In fact, the atomic displacement directions in the supercell

shown by ISODISTORT for each displacive mode just

constitute the corresponding column of the square matrix in

(3), except ISODISTORT defines the directions such that the

magnitude of the largest component is equal to 1 or �1. For

example, for the Mþ3 mode of X anions condensed in the Pbnm

perovskite structure, ISODISTORT shows that the symmetry-

independent X1 anion at (0, 0, 1
4) does not move while the X2

anion moves from the ideal position (1
4,

1
4, 0) along the [�1, 1, 0]

direction in the supercell. However, we cannot simply put

these direction components into the fourth column in (3)

associated with the Mþ3 mode because the numbers in the

column should be the coordinate changes induced by the unit-

mode amplitude d04 = 1 or d4 = ap. The supercell lattice vectors

of the Pbnm structure are [1, 1, 0], [�1, 1, 0] and [0, 0, 2] in

terms of the cubic lattice vectors, so the direction vector [�1,

1, 0] of the X2 anion in the supercell is actually vector [�2, 0,

0] in the cubic parent cell. Let us hypothetically assume that

the coordinates of the X2 anion change by [�1, 1, 0] in the

supercell, then the mode amplitude would be d4 = Fap, F = 2,

recalling that Knight (2009) defines the mode amplitude as the

distance of the independent displacement component.

Therefore, the direction vector [�1, 1, 0] divided by the factor

F = 2 are the coordinate changes induced by the unit-mode

amplitude and the resulting �1
2 and 1

2 should be put into the

fifth and sixth positions of the fourth column associated with

u2 = xX2 �
1
4 and v2 = yX2 �

1
4.

Owing to the F factor, and the different terminology used

by ISODISTORT, the mode amplitude output from

ISODISTORT must be converted to obtain the mode ampli-

tudes d0i, which otherwise have to be calculated by solving (3).

ISODISTORT outputs the standard supercell-normalized

amplitude As rather than d defined by Knight (2009). Their

relationship is As = (1/normfactor) � d/(Fap), where the

normfactor depends on the structure and Fap is the mode

amplitude produced by the relevant atoms’ direction vectors.

With d0 = d/ap, we have

d0 ¼ As� normfactor� F: ð4Þ

ISODISTORT calculates As and normfactor for each displa-

cive mode condensed in the input structure, so in practice we

can obtain d0i of each mode by this simple expression rather

than solving (3).

Based on (3) we add the ideal values of the independent

fractional coordinates corresponding to the cubic aristotype
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Table 1
Basis modes of irreps Mþ2 , Mþ3 , Rþ3 , Rþ4 , Rþ5 and Xþ5 of the space group
Pm�33m.

Reproduced from Knight (2009). The mode displacements are derived by
Cowley (1964).

Irrep Wavevector
A cation
displacements†

X anion
displacements‡

Mþ2 (0, 1
2,

1
2) – XI(z) = �XII(y)

(1
2, 0, 1

2) – XI(z) = �XIII(x)
(1

2,
1
2, 0) – XIII(x) = �XII(y)

Mþ3 (0, 1
2,

1
2) – XI(y) = �XII(z)

(1
2, 0, 1

2) – XI(x) = �XIII(z)
(1

2,
1
2, 0) – XII(x) = �XIII(y)

Rþ3 (1
2,

1
2,

1
2) – XI(z) = XII(y) = �1

2XIII(x)
XI(z) = �XII(y)

Rþ4 (1
2,

1
2,

1
2) – XI(y) = �XII(z)

XI(x) = �XIII(z)
XII(x) = �XIII(y)

Rþ5 (1
2,

1
2,

1
2) A(x) XI(y) = XII(z)

A(y) XI(x) = XIII(z)
A(z) XII(x) = XIII(y)

Xþ5 (Cowley, 1964) (0, 1
2, 0) A(z) XII(z)

A(x) XII(x)
(0, 0, 1

2) A(x) XI(x)
A(y) XI(y)

(1
2, 0, 0) A(y) XIII(y)

A(z) XIII(z)
Xþ5 (ISOTROPY) (0, 1

2, 0) A(z) = �A(x) XII(z) = �XII(x)
A(z) = A(x) XII(z) = XII(x)

(0, 0, 1
2) A(x) = �A(y) XI(x) = �XI(y)

A(x) = A(y) XI(x) = XI(y)
(1

2, 0, 0) A(y) = �A(z) XIII(y) = �XIII(z)
A(y) = A(z) XIII(y) = XIII(z)

† The A cation is at (1
2,

1
2,

1
2) in the cubic unit cell. ‡ I, II and III are used by Cowley to

denote the three X anions at (0, 0, 1
2), (0, 1

2, 0) and (1
2, 0, 0) in the cubic unit cell. The x, y

and z in parentheses indicate the displacement direction in the cubic lattice. The mode
displacements in other unit cells can be deduced from the wavevector of the mode.



on both sides of the equation, so

that the mode amplitudes are

directly related to the fractional

coordinates. The results for all

the 15 tilted perovskite structures

are listed in Table S1 of the

supplementary material. The

space group settings and Wyckoff

positions adopted for the 15

perovskite structures follow

Table 5 of Woodward (1997) and

Table 1 of Avdeev et al. (2007),

except we use P�11 rather than F�11
because ISODISTORT does not

accept input structures in space-

group settings that are not

included in the International

Tables for Crystallography. In

Table S1 we omit the prime

symbol for d and use three

subscripts. Other than Miller &

Love’s irrep symbol, the first

subscript indicates whether the

mode involves displacements of

A cations at cubic Wyckoff b sites

or X anions at d sites. The digits

in the third subscript indicate

which basis modes of the irrep

make up the linear combination

acting as one symmetry-adapted

mode. We should note that the

basis modes constituting the

symmetry-adapted mode can

change if a different subgroup of

Pm�33m is chosen for the tilted

perovskite structure containing

the mode, which is conjugate to

that used in this study. In this

case the symmetry operation in

Pm�33m which relates the two

conjugate subgroups transforms

the domain state used in this

study to another. So, the order

parameter for each irrep is

multiplied by the matrix

representing the operation in

the irrep and may become a

different combination of basis

modes. As an independent

component of a varying order

parameter, the symmetry-

adapted mode may also become a

different combination of basis

modes of the associated irrep,

and hence may be denoted by

different digits in the third

subscript.
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Table 2
VA/VB as a function of mode amplitudes for 15 tilted perovskite structures.

The expression of VA/VB following the equals sign is in terms of the amplitudes of all the symmetry-adapted modes
of X anions condensed in each tilted perovskite structure and that following the approximately equal sign is in
terms of only the tilt-mode amplitudes. The mode amplitude is a fraction of ap, the unit-cell dimension of the cubic
aristotype. The prime symbol in d0 is omitted for tidiness. The three subscripts of d are, in sequence: the relevant
atom type, the irrep and the group of digits indicating the linear combination of the corresponding basis modes of
the irrep.

a a0a0a0 No: 221 Pm�33m

VA

VB

¼ 5

b a�a�a� No: 167 R�33c

VA

VB

¼
6

1þ 4� 3d2
X;Rþ

4
;123

� 1

c a0a0cþ No: 127 P4=mbm

VA

VB

¼
6

1þ 4d2
X;Mþ

3
;1

� 1

d a0a0c� No: 140 I4=mcm

VA

VB

¼
6

1þ 4d2
X;Rþ

4
;1

� 1

e a0b�b� No: 74 Imma

VA

VB

¼
6

1þ 8d2
X;Rþ

4
;12
� 8d2

X;Rþ
5
;12

� 1

’
6

1þ 4� 2d2
X;Rþ

4
;12

� 1

f a0b�c� No. 12 I2=m (non-standard setting of C2=m)

VA

VB

¼
6

1þ 4d2
X;Rþ

4
;1
þ 4d2

X;Rþ
4
;2
� 4d2

X;Rþ
5
;1
� 4d2

X;Rþ
5
;2

� 1

’
6

1þ 4 d2
X;Rþ

4
;1
þ d2

X;Rþ
4
;2

� �� 1

g a�b�b� No. 15 I2=a (non-standard setting of C2=c)

VA

VB

¼
6

1� 4d2
X;Rþ

3
;12
þ 8d2

X;Rþ
4
;13
þ 4d2

X;Rþ
4
;2
� 8d2

X;Rþ
5
;13

� 1

’
6

1þ 4 2d2
X;Rþ

4
;13
þ d2

X;Rþ
4
;2

� �� 1

h aþb�b� No: 62 Pnma

VA

VB

¼
6

1� 4d2
X;Mþ

2
;3
þ 4d2

X;Mþ
3
;3
þ 8d2

X;Rþ
4
;12
� 8d2

X;Rþ
5
;12
þ 16 dX;Mþ

2
;3 þ dX;Mþ

3
;3

� �
dX;Rþ

4
;12 þ dX;Rþ

5
;12

� �
dX;Xþ

5
;1

� 1

’
6

1þ 4 d2
X;Mþ

3
;3
þ 2d2

X;Rþ
4
;12

� �� 1

i aþaþc� No: 137 P42=nmc

VA

VB

¼
6

1þ 8d2
X;Mþ

3
;23
� 4d2

X;Mþ
4
;1
� 8d2

X;Mþ
4
;23
þ 4d2

X;Rþ
4
;1
� 16dX;Mþ

4
;1 d2

X;Mþ
3
;23
� d2

X;Mþ
4
;23

� �� 1

� 16 dX;Mþ
3
;23 � dX;Mþ

4
;23

� �
dX;Rþ

4
;1dX;Xþ

5
;1256

’
6

1þ 4 2d2
X;Mþ

3
;23
þ d2

X;Rþ
4
;1

� �� 1



After comparing the results of the displacive mode

decomposition of perovskite with those of Knight (2009) we

found a general agreement, with three points to note. The first

is that Knight uses linear combinations of Rþ5 basis modes

A(x) = A(y) and A(x) = �A(y) in the I2/m and P21/m (I1121/n

and P1121/m in Knight, 2009)

structures, rather than the Rþ5
basis modes themselves such as

A(x), A(y), A(z) in the P�11 (F�11 in

Knight, 2009) structure. In these

three structures, whether the Rþ5
basis modes or their linear

combinations are used affects the

relevant part of the mode

decomposition equation. The

second point is similar; that in the

P21/m structure the linear

combinations of Xþ5 basis modes

XI(x) = XI(y) and XI(x) = �XI(y)

ISODISTORT uses mean that

the mode decomposition equa-

tion is a little different from

Knight’s which involves the Xþ5
basis modes XI(x) and XI(y). The

third point is that although

Knight did not write the Rþ3 mode

in the I2/a (I21/b11 in Knight,

2009) perovskite structure as a

linear combination of basis

modes XI(z) = XII(y) = �1
2XIII(x)

and XI(z) = �XII(y) of irrep Rþ3
(Table 1), the mode he wrote as

XII(y) = �XIII(x) is actually a

linear combination of the two

basis modes as denoted by our

symbol dX;Rþ
3
;12 (Table S1g).

However, if the space group I2/a

undergoes a conjugate subgroup

transformation (as mentioned

previously) through the threefold

rotation around the cubic [1, 1, 1]

direction Cþ31, the mode XII(y) =

�XIII(x) would transform to

XI(z) = �XII(y), the second basis

mode of irrep Rþ3 , and hence the

symbol would be dX;Rþ
3
;2 rather

than dX;Rþ
3
;12. This is an example

of the mode symbol changing

with the domain states described

by different conjugate subgroups

of Pm�33m.

3. Polyhedral volume ratio
VA/VB

3.1. VA/VB as a function of displacive mode amplitudes

Avdeev et al. (2007) derived the formulae for the AX12 and

BX6 polyhedral volume ratio VA/VB in terms of the fractional

coordinates of the X anions for the 15 tilted perovskite

structures and the Pm�33m aristotype structure. Note that the
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j a0bþc� No: 63 Cmcm

VA

VB

¼
6

1þ 4d2
X;Mþ

3
;1
� 4d2

X;Mþ
4
;1
þ 4d2

X;Rþ
4
;3
� 4d2

X;Rþ
5
;3
� 8 dX;Mþ

3
;1 � dX;Mþ

4
;1

� �
dX;Rþ

4
;3 � dX;Rþ

5
;3

� �
dX;Xþ

5
;34

� 1

’
6

1þ 4 d2
X;Mþ

3
;1
þ d2

X;Rþ
4
;3

� �� 1

k aþb�c� No: 11 P21=m

VA

VB

¼
6

1þ 4d2
X;Mþ

1
;3
� 4d2

X;Mþ
2
;3
þ 4d2

X;Mþ
3
;3
� 4d2

X;Mþ
4
;3
þ 4d2

X;Rþ
4
;1
þ 4d2

X;Rþ
4
;2
� 4d2

X;Rþ
5
;1
� 4d2

X;Rþ
5
;2

� 1

þ 8
dX;Mþ

1
;3 þ dX;Mþ

2
;3 þ dX;Mþ

3
;3 þ dX;Mþ

4
;3

� �
dX;Rþ

4
;1 þ dX;Rþ

5
;1

� �
þ dX;Mþ

1
;3 � dX;Mþ

2
;3 � dX;Mþ

3
;3 þ dX;Mþ

4
;3

� �
dX;Rþ

4
;2 � dX;Rþ

5
;2

� �
0
B@

1
CAdX;Xþ

5
;1

� 8
dX;Mþ

1
;3 þ dX;Mþ

2
;3 � dX;Mþ

3
;3 � dX;Mþ

4
;3

� �
dX;Rþ

4
;1 þ dX;Rþ

5
;1

� �
� dX;Mþ

1
;3 � dX;Mþ

2
;3 þ dX;Mþ

3
;3 � dX;Mþ

4
;3

� �
dX;Rþ

4
;2 � dX;Rþ

5
;2

� �
0
B@

1
CAdX;Xþ

5
;2

’
6

1þ 4 d2
X;Mþ

3
;3
þ d2

X;Rþ
4
;1
þ d2

X;Rþ
4
;2

� �� 1

l aþaþaþ No: 204 Im�33

VA

VB

¼
6

1þ 12d2
X;Mþ

3
;123
� 12d2

X;Mþ
4
;123
þ 16 3d2

X;Mþ
3
;123
þ d2

X;Mþ
4
;123

� �
dX;Mþ

4
;123

� 1

’
6

1þ 4� 3d2
X;Mþ

3
;123

� 1

m a0bþbþ No: 139 I4=mmm

VA

VB

¼
6

1þ 8d2
X;Mþ

3
;23
� 4d2

X;Mþ
4
;1
� 8d2

X;Mþ
4
;23
� 16dX;Mþ

4
;1 d2

X;Mþ
3
;23
� d2

X;Mþ
4
;23

� �� 1

’
6

1þ 4� 2d2
X;Mþ

3
;23

� 1

n aþbþcþ No: 71 Immm

VA

VB

¼
6

1þ 4d2
X;Mþ

3
;1
þ 4d2

X;Mþ
3
;2
þ 4d2

X;Mþ
3
;3
� 4d2

X;Mþ
4
;1
� 4d2

X;Mþ
4
;2
� 4d2

X;Mþ
4
;3

� 1

þ 16dX;Mþ
3
;3 dX;Mþ

3
;2dX;Mþ

4
;1 þ dX;Mþ

3
;1dX;Mþ

4
;2

� �
þ 16 dX;Mþ

3
;1dX;Mþ

3
;2 þ dX;Mþ

4
;1dX;Mþ

4
;2

� �
dX;Mþ

4
;3

’
6

1þ 4 d2
X;Mþ

3
;1
þ d2

X;Mþ
3
;2
þ d2

X;Mþ
3
;3

� �� 1

o a�b�c� No: 2 P�11

VA

VB

¼
6

1þ 12d2
X;Rþ

1
;1
� 3d2

X;Rþ
3
;1
� 4d2

X;Rþ
3
;2
þ 4d2

X;Rþ
4
;1
þ 4d2

X;Rþ
4
;2
þ 4d2

X;Rþ
4
;3
� 4d2

X;Rþ
5
;1
� 4d2

X;Rþ
5
;2
� 4d2

X;Rþ
5
;3

� 1

’
6

1þ 4 d2
X;Rþ

4
;1
þ d2

X;Rþ
4
;2
þ d2

X;Rþ
4
;3

� �� 1

Table 2 (continued)



unit-cell parameters do not appear in the formulae because

although they affect the values of VA and VB, changes in the

unit-cell parameters change both polyhedral volumes in the

same proportion and the ratio VA/VB therefore remains

unaffected by the unit-cell parameters. Further, because the

AX12 cuboctahedra and BX6 octahedra are bound by X

anions, the VA/VB formulae only contain the fractional coor-

dinates of the X anions. If we substitute the lines concerning

the X anions in the mode decomposition equation into the

VA/VB formula of Avdeev et al. (2007), we can obtain the

VA/VB formula in terms of the amplitudes of the displacive

modes of the X anions. The resulting VA/VB formulae for the

15 perovskite structures are shown in Table 2. In the Cmcm,

I4/mmm, P21/m, P42/nmc, Im�33 and Immm structures, the A or

B cation occupies more than one symmetry-independent site

and hence has more than one polyhedral volume, as denoted

in Table 1 of Avdeev et al. (2007). In these cases, the expres-

sion for the ratio of the average polyhedral volumes is used for

substitution. As expected, only the modes involving the X

anions are present in the formulae. All the formulae have a

common general form in which if all the mode amplitudes in

the denominator are zero, VA/VB becomes 5, the value in the

cubic aristotype structure without any distortion. VA/VB can

become smaller or larger than 5 depending on the mode

amplitudes. We should note that the VA/VB formulae given in

Table 2 are based on the mode-decomposition equations given

in Table S1. If we substitute a mode amplitude d0 with �d0 in

the mode decomposition equation, the resulting VA/VB

formula would also have the d0 replaced by �d0.

3.2. Effect of octahedral tilt modes on VA/VB

Of all the displacive modes of the X anions, the Mþ3 and Rþ4
modes can induce in-phase and out-of-phase octahedral tilts,

and hence are called octahedral tilt modes. The other modes

only contribute to the distortion of the octahedra and hence

are called octahedral distortion modes. We should emphasize

that even in the absence of octahedral distortion modes it is

possible for the octahedra to be distorted as a consequence of

the deviation of the metric from cubic symmetry. These types

of distortions are therefore included in the �-point strain

modes and not in the octahedral distortion modes.

If we keep only the octahedral tilt modes in the VA/VB

formula and set the octahedral distortion modes to zero, we

can obtain the VA/VB formula as a function of the amplitudes

of the octahedral tilt modes alone. The results for the 15 tilted

perovskite structures are shown in Table 2 and are indicated

by the use of ‘approximately equal’ signs. The resulting

formulae are much simpler and have the general

form

VA

VB

¼
6

1þ 4
P

i

nid
02
i

� 1; ð5Þ

where the sum is over all of the condensed octahedral tilts (at

most three modes in all tilted perovskite structures), d0i is the

amplitude of the ith octahedral tilt mode which is a linear

combination of the basis modes of irrep Mþ3 or Rþ4 , and ni is

the number of basis modes involved in the ith mode. Note that

the simplified form given in (5) shows that when only the

octahedral tilt modes condense, VA/VB is never greater than 5

and it decreases with increasing mode amplitudes, in accor-

dance with the experimental observation that the polyhedral

volume ratio VA/VB can be reduced by octahedral tilting (e.g.

Thomas & Beitollahi, 1994; Thomas, 1996, 1998; Angel et al.,

2005).

The octahedral tilt modes condensed in each tilted

perovskite structure coincide with the tilt system. For example,

in the structure with a+b�b� tilting and space group Pnma, the

Mþ3 and Rþ4 modes are condensed with order parameters (0, 0,

dX;Mþ
3
;3) and (dX;Rþ

4
;12, �dX;Rþ

4
;12, 0), which correspond to the

in-phase tilt a+ and the two out-of-phase tilts b�b�. If we

denote the amplitudes of the basis modes, of either irrep Mþ3
or Rþ4 , associated with a, b and c pseudo-cubic axes as da, db

and dc, then we have da = dX;Mþ
3
;3, db = dX;Rþ

4
;12, dc = �dX;Rþ

4
;12

and equation (5) for a+b�b� (Table 2h) can be rewritten as

VA

VB

¼
6

1þ 4 d2
a þ d2

b þ d2
c

� 	� 1: ð6Þ

It is straightforward to test this form for the rest of the 15 tilt

systems.

Recall equation (2) showing the relationship between the

octahedral tilt angle around a pseudo-cubic axis and the

corresponding octahedral tilt mode. Since we attribute the

unit-cell deformation of the tilted structure to the strain

modes, as in ISODISTORT, the unit-cell volume can be

rounded to the multiple of that of the cubic aristotype, V =

Nap
3. Then, equation (2) becomes

’ ¼ arctan 2d0; ð7Þ

where d0 = d/ap is just one of da, db and dc. If we substitute (7)

into (6) three times, we have

VA

VB

¼
6

1þ tan2 ’a þ tan2 ’b þ tan2 ’c

� 1; ð8Þ

where ’a, ’b and ’c are the octahedral tilt angles around a, b

and c pseudo-cubic axes, respectively. Thus, after neglecting

the unit-cell deformation of the tilted structure (which does

not affect VA/VB) and all the octahedral distortion modes, the

polyhedral volume ratio VA/VB becomes a simple function of

the octahedral tilt mode amplitudes or the octahedral tilt

angles associated with the three pseudo-cubic axes.

For tilt systems involving a tilt about a single axis equation

(8) reduces to VA/VB = 6/(1 + tan2’) – 1, which is identical to

the more common form of VA/VB = 6cos2’ � 1. The latter can

be derived by simple geometry and is a special case of VA/VB =

6cos2�mcos�z � 1 proposed by Thomas (1996) for ortho-

rhombic and tetragonal perovskites, where because the octa-

hedra only rotate around the z axis, the angle between the z

axis and the corresponding octahedral stalk �z is zero and the

other two axis-stalk angles, and hence their average �m is equal

to the tilt angle ’. For the a�a�a� and a+a+a+ tilt systems

where the three tilt angles and the three mode amplitudes are

equal (i.e. ’a = ’b = ’c = ’ and da = db = dc = d0) equation (8)

reduces to VA/VB = 6/(1 + 3tan2’) � 1 = 6/(1 + 12d02) � 1. The
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rotation angle ! of the octahedra around the [1, 1, 1] axis can

be derived as tan ! = 2
ffiffiffi
3
p

d0 from the displacements of the

octahedral vertices, so by substitution we obtain VA/VB =

6cos2! � 1, which was proposed by Thomas & Beitollahi

(1994) for rhombohedral perovskites.

3.3. Geometric proof

Although equation (6) emerges by inspection of the VA/VB

formulae for all the 15 tilt systems, it can actually be proven

quite simply by geometry. Consider the BX6 octahedron

centered at the origin of the unit cell of the cubic aristotype.

We use Xa, Xb and Xc to denote the three X anions with the

fractional coordinates (1
2, 0, 0), (0, 1

2, 0) and (0, 0, 1
2). The basis

mode, of either irrep Mþ3 or Rþ4 , associated with the a axis,

imposes on Xb and Xc displacements (0, 0, da) and (0, �da, 0).

Similarly, the basis mode associated with the b axis imposes on

Xc and Xa displacements (db, 0, 0) and (0, 0,�db), respectively,

and that associated with the c axis imposes on Xa and Xb

displacements (0, dc, 0) and (�dc, 0, 0). If the octahedral

distortion modes are not considered, Xa, Xb and Xc are moved

by a combination of all three modes to (1
2, dc, �db), (�dc,

1
2, da)

and (db, �da, 1
2). The volume of the tetrahedron bound by Xa,

Xb, Xc and the origin O can be calculated as

VOXaXbXc
¼

1

6
�

1
2 �dc db

dc
1
2 �da

�db da
1
2














 ¼

1þ 4 d2
a þ d2

b þ d2
c

� 	
48

;

ð9Þ

where all lengths are fractions of ap and the volume is a

fraction of a3
p. The remaining three X anions of the BX6

octahedron centered at the origin are just related by inversion

through the origin to Xa, Xb and Xc. The volumes of these

other seven tetrahedra making up the octahedron can be

calculated by a determinant as equation (9) and the results are

all equal to VOXaXbXc
. Therefore, the octahedral volume is

eight times VOXaXbXc
and is the same for all of the other

octahedra in the supercell of the tilted perovskite. The volume

of the AX12 cuboctahedra VA can be obtained by subtracting

the octahedral volume VB from the total volume a3
p associated

with each cubic lattice point and the polyhedral volume ratio

VA/VB can be calculated by

VA

VB

¼
1� 8� VOXaXbXc

8� VOXaXbXc

¼
6

1þ 4 d2
a þ d2

b þ d2
c

� 	� 1; ð10Þ

which is just equation (6). Although this result is obtained in

reference to the cubic lattice, it applies to all tilted perovskites

because, as noted above, the deformation of the unit cell has

no effect on the volume ratio VA/VB.

4. Worked example with ISODISTORT

As an example of how to extract the information required to

calculate the mode amplitudes and tilt angles from ISODIS-

TORT, we use the room-pressure structure of pure MgSiO3

Pnma perovskite published by Dobson & Jacobsen (2004).

The original structure was published in the space group Pbnm,

so the first step is to transform the published atom coordinates

into Pnma. Comparison of the resulting coordinates with those

given in Table S1h for Pnma shows that in addition an origin

shift has to be applied to place the B cation site (Si) at the

origin, and that the O atoms then have to be moved to

equivalent positions by the space-group operators so that they

correspond exactly to those positions listed in Table S1h. The

resulting coordinate list is given in Table 3. The cubic

perovskite structure never becomes stable under any condi-

tions for MgSiO3, so a fictitious structure has to be constructed

to act as a parent reference structure for the ISODISTORT

program. Note that although the individual values of As and

normfactor produced by ISODISTORT depend on the cell

parameter of the cubic parent structure, their product used in

equation (4) does not. The only requirement is that the

volume strain between the parent structure and the distorted

structure is sufficiently small to allow ISODISTORT to iden-
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Table 3
CIF files for the example calculation in x4.

The items with the name ‘_space_group_symop_operation_xyz’ in the CIF
file are needed by ISODISTORT. They are omitted here to save space.

Distorted structure
data_MgSiO3_Pnma_P0_DobsonJacobsen

_space_group_name_H-M_alt ’P n m a’

_diffrn_ambient_pressure 0

_cell_length_a 4.9298(3)

_cell_length_b 6.8990(3)

_cell_length_c 4.7780(2)

_cell_angle_alpha 90.0000

_cell_angle_beta 90.0000

_cell_angle_gamma 90.0000

loop_

_atom_site_label

_atom_site_fract_x

_atom_site_fract_y

_atom_site_fract_z

Mg 0.55588 0.25000 0.01378

Si 0.00000 0.00000 0.00000

O1 -0.03355 0.25000 -0.10189

O2 0.79867 0.05258 0.30374

Parent structure
data_MgSiO3_Pm_3m_P0

_space_group_name_H-M_alt ’P m -3 m’

_diffrn_ambient_pressure 0

_cell_length_a 3.438

_cell_length_b 3.438

_cell_length_c 3.438

_cell_angle_alpha 90.0000

_cell_angle_beta 90.0000

_cell_angle_gamma 90.0000

loop_

_atom_site_label

_atom_site_fract_x

_atom_site_fract_y

_atom_site_fract_z

Mg 0.50000 0.50000 0.50000

Si 0.00000 0.00000 0.00000

O 0.50000 0.00000 0.00000



tify the equivalent atoms, and this can be achieved by setting

the unit-cell volume of the cubic parent structure equal to the

subcell volume of the distorted structure (Table 3).

After loading the structures to ISODISTORT, and

performing the mode decomposition (Method 4 for the

search) with the appropriate basis (in this case [1, 0, �1],[0, 2,

0],[1, 0, 1]), all of the information required for the calculation

of mode amplitudes, tilt angles and the polyhedral volume

ratios is provided on the ‘modes details’ page. The values of As

and normfactor for the modes involving only the O atoms can

be copied directly (Table 4). The F factors have to be calcu-

lated by transforming the displacive mode direction vectors

back into the parent subcell. For example, for the O2 atom

under the Rþ4 mode, the mode direction vector [dx, dy, dz] is

given as [0.0, 0.5, 0.0] in the supercell, which is equivalent to

0.5 times the basis vector [0, 2, 0] in the parent cubic cell, and is

thus [0, 1, 0]. As this is a simple lattice vector, the F factor is 1.

As it should be, the same result is obtained for Rþ4 if the O1

atom is considered; [dx, dy, dz] = [0, 0, �1] so in the parent

cubic cell this is equal to �1 � [1, 0, 1] and thus [�1, 0, �1],

another simple lattice vector. The F factor for the Mþ3 mode is

equal to 2, because for O2 [dx, dy, dz] is given as [1, 0, 1] in the

distorted structure, and is thus equal to [1, 0, �1] + [1, 0, 1] in

the parent cubic structure or [2, 0, 0] which is twice the cubic

lattice vector. All of the displacive mode definitions and F

factors for the example are listed in Table 4.

By inserting the mode amplitudes into the equations listed

in Table 2(h), the polyhedral volume ratio for this MgSiO3

perovskite structure is calculated as 4.29, but 4.32 when only

the tilt modes are considered. The tilt angles can also now be

calculated using equation (7) as ’a = arctan (2dX;Mþ
3
;3) = 11.6�

and ’b = ’c = arctan (2dX;Rþ
4
;12) = 11.7�.

5. Experimental data analysis

Review of the expressions given in Table 2 for the polyhedral

volume ratio VA/VB reveals three distinct classes in terms of

the relationship to the mode amplitudes. In this section we

review selected experimental data for one example from each

of these three classes in order to demonstrate how the inter-

play between the octahedral tilt modes and the

octahedral distortion modes controls the variation

of the polyhedral volume ratio in each case.

5.1. Perovskites without octahedral distortion

There are three tilt systems, apart from the

trivial untilted case of Pm�33m symmetry, in which

no octahedral distortion modes are allowed:

a�a�a� (R�33c), a0a0c+ (P4/mbm) and a0a0c� (I4/

mcm). The R�33c perovskite structure is produced

by three out-of-phase tilts of equal magnitude

around the three pseudo-cubic axes. Corre-

spondingly, the out-of-phase tilt Rþ4 mode

condensed in the R�33c structure is a linear

combination of the three Rþ4 basis modes with

equal magnitude coefficients. The Rþ4 mode

amplitude is thus the only internal degree of freedom. The

expression for VA/VB in terms of the mode amplitude is

therefore a simple function of the tilt mode amplitude alone,

as it is for the tilt systems a0a0c+ and a0a0c� (Tables 2b–d). For

all of these three tilt systems there is a unique relationship

between increasing amplitude of the tilt mode and decreasing

VA/VB ratio.

As an example of a purely tilted perovskite, we considered

LaCrO3 perovskite above its orthorhombic to rhombohedral

phase transition at approximately 533 K (Hashimoto et al.,

2000). The rhombohedral structure with space group R�33c was

determined by neutron powder diffraction up to 1013 K

(Oikawa et al., 2000). We calculated the polyhedral volume

ratio VA/VB from the only free coordinate xO in the hexagonal

unit cell at each temperature using the formula from Avdeev et

al. (2007), and the mode amplitude dX;Rþ
4
;123 from ISODIS-

TORT following equation (4). Fig. 1 shows that the LaCrO3
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Table 4
Output from ISODISTORT: mode details for the perovskite structure defined in Table
3.

Mode† As normfactor Atom dx dy dz F factor d0

Rþ4 (a,�a,0) 1.42368 0.07272 O2 0.0 0.5 0.0 1 0.10353
O1 0.0 0.0 �1.0

Rþ5 (a,a,0) 0.02248 0.07272 O2 0.0 0.5 0.0 1 0.00163
O1 0.0 0.0 1.0

Xþ5 (a,0,0,0,0,0) 0.32624 0.10284 O2 0.0 0.0 0.0 1 0.03355
O1 �1.0 0.0 0.0

Mþ2 (0,0,a) 0.04930 0.05142 O2 �1.0 0.0 1.0 2 0.00507
O1 0.0 0.0 0.0

Mþ3 (0,0,a) 0.99585 0.05142 O2 1.0 0.0 1.0 2 0.10241
O1 0.0 0.0 0.0

† Only those modes involving oxygen displacements are listed in this table. The order parameter for each
mode is in the parenthesis.

Figure 1
Variation of VA/VB calculated from the atomic coordinates (Avdeev et al.,
2007) with mode amplitude dX;Rþ

4
;123 of the R�33c phase of LaCrO3

perovskite. The curve is the VA/VB (dX;Rþ
4
;123) expression for the R�33c

structure given in Table 2(b).



experimental data fall on the curve representing the theore-

tical relationship between the two given in Table 2(b). As the

temperature increases, the octahedral tilt mode amplitude

dX;Rþ
4
;123 decreases and the polyhedral volume ratio VA/VB

increases towards 5, both showing that, as normal for R�33c

perovskite structures, LaCrO3 becomes less tilted at higher

temperatures and may eventually transform to the aristotype

with Pm�33m symmetry (e.g. Hofer & Kock, 1993).

5.2. Perovskites with separated tilts and distortions.

The Imma perovskite structure is produced by a0b�b�

tilting which is composed of two out-of-phase tilts around two

pseudo-cubic axes by an equal angle and no tilt around the

third axis. Correspondingly, the out-of-phase tilt Rþ4 mode

condensed in the Imma structure is a linear combination of

two of the three Rþ4 basis modes with equal magnitude coef-

ficients. There is also an octahedral distortion Rþ5 mode which

is a linear combination of two of the three Rþ5 basis modes. The

VA/VB (dX;Rþ
4
;12, dX;Rþ

5
;12) expression for the Imma structure

(Table 2e) is plotted as a surface in Fig. 2, which shows that

VA/VB decreases with the octahedral tilt mode amplitude

dX;Rþ
4
;12 while it increases with the octahedral distortion mode

amplitude dX;Rþ
5
;12. The curve in the dX;Rþ

5
;12 ¼ 0 plane just

displays the decreasing function VA/VB (dX;Rþ
4
;12) omitting the

octahedral distortion mode amplitude dX;Rþ
5
;12. This same form

of complete separation of the influence of the tilt modes and

distortion modes on VA/VB is also displayed by two other tilt

systems, a0b�c� (I2/m) and a�b�b� (I2/a) (Table 2f and g). In

all three cases the octahedral distortions always contribute to

an increase in VA/VB, as shown in Fig. 2.

There are limited experimental data for Imma perovskites

because they normally only exist as an intermediate phase

with a limited temperature range of stability (e.g. Howard et

al., 2000), although BaPbO3 (Fu et al., 2005, 2007) appears to

be an exception. Experimental structural data of several Imma

perovskites were added to the coordinate frame in Fig. 2. As

for the experimental data in Fig. 1, VA/VB values in Fig. 2 were

calculated from the X anion coordinates following the formula

from Avdeev et al. (2007). The mode amplitudes dX;Rþ
4
;12 and

dX;Rþ
5
;12 were calculated from ISODISTORT. In Fig. 2 the

experimental points lie on the theoretical surface from Table

2(e) and hence validate the VA/VB expression for the Imma

structure. Note that the series of experimental points are very

close to the dX;Rþ
5
;12 ¼ 0 plane, which shows that in real Imma

perovskite structures the octahedral distortion mode ampli-

tude dX;Rþ
5
;12 is very small compared with the octahedral tilt

mode amplitude dX;Rþ
4
;12. Therefore, a good approximation

would be to omit dX;Rþ
5
;12 when calculating VA/VB of an Imma

structure. For the compositions where experimental data are

available over a range of temperatures the octahedral tilt

mode amplitude dX;Rþ
4
;12 decreases with increasing tempera-

ture. However, while the octahedral distortion mode ampli-

tude dX;Rþ
5
;12 decreases with increasing temperature in some

cases, such as BaCe0.8Zr0.2O3 and BaTbO3 (Pagnier et al., 2000;

Fu et al., 2004), in others such as in SrSnO3 (Goodwin et al.,

2007) it increases (Fig. 2). Nonetheless, the change in tilt-mode
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Figure 2
Variation of VA/VB with mode amplitudes dX;Rþ

4
;12 and dX;Rþ

5
;12 of Imma

perovskites. The surface is the VA/VB (dX;Rþ
4
;12, dX;Rþ

5
;12) expression for

the Imma structure given in Table 2(e). The series of dots are BaPbO3 at
4.2–553 K (red; Fu et al., 2005, 2007), BaCe0.8Zr0.2O3 at 300 and 345 K
(orange; Pagnier et al., 2000), SrSnO3 at 650–790 K (cyan; Goodwin et al.,
2007), BaTbO3 at 40–260 K (yellow; Fu et al., 2004), Sr1 � xCexMnO3, x =
0.35, 0.40 (purple; Kennedy et al., 2008), (Na0.5Nd0.5)1 � xSrxTiO3, x = 0.3,
0.4 (green; Ranjan et al., 2006). The black dots are Sr0.6Ba0.4SnO3

(Mountstevens et al., 2003), CeAlO3 at 373 K (Fu & Ijdo, 2006), BaCeO3

at 573 K (Knight, 1994), PrAlO3 at 185 K (Carpenter et al., 2005),
Ca0.4La0.4TiO3 (Zhang et al., 2007), BaPrO3 at 573 K (Saines et al., 2009),
Pr0.76La0.24AlO3 at 170 K (Basyuk et al., 2009), BaCe0.80Y0.20O2.9 at 773 K
(Malavasi et al., 2008), BaPr0.9Y0.1O3 � � at 573 K (Knee et al., 2009),
0.3La(Mg0.5Ti0.5)O3–0.7SrTiO3 (Avdeev et al., 2002) and SrMoO3 at 5 K
(Macquart et al., 2010).

Figure 3
Variation of VA/VB of the Pnma perovskite with individual mode
amplitudes dX;Mþ

2
;3, dX;Mþ

3
;3, dX;Rþ

4
;12, dX;Rþ

5
;12 or dX;Xþ

5
;1.



amplitude is greater in all cases so that VA/VB increases with

increasing temperature as required for the general evolution

of the structure towards a higher-symmetry, less tilted poly-

morph.

5.3. Perovskites with combined tilts and distortions

Seven of the remaining eight tilt systems have expressions

for the volume ratio VA/VB that contain three types of terms in

the denominator (Table 2h–n). In addition to the separate

terms in the squares of the individual amplitudes of the tilt and

distortion modes found, for example, for Imma, the expres-

sions for these tilt systems include third-order products of the

amplitudes of both types of modes. As a consequence, the

volume ratio of these perovskites can be either larger or

smaller than the VA/VB ratio due to tilting alone. The last case,

of tilt system a�b�c� (P�11), does not contain these triplets, but

terms with different signs that can also lead to the distortional

modes increasing or decreasing VA/VB (Table 2o).

The Pnma perovskite structure is the most commonly found

tilt system in perovskites. It is produced by a+b�b� tilting

which is composed of one in-phase tilt around a pseudo-cubic

axis and two out-of-phase tilts around the other two pseudo-

cubic axes by an equal angle. Correspondingly, condensed in

the Pnma structure is an in-phase tilt Mþ3 basis mode and an

out-of-phase tilt Rþ4 mode which is a linear combination of two

of the three Rþ4 basis modes with equal magnitude coefficients.

In addition, there are three octahedral distortion modes: an

Mþ2 basis mode, a linear combination of two Rþ5 basis modes

and an Xþ5 basis mode (Table 1). The Pnma structure thus has

a five-variable function for VA/VB. The volume ratio as a

function of each individual mode amplitude can be obtained

simply by making the other four variables zero. The resulting

five single-variable functions plotted in Fig. 3 show that VA/VB

decreases with the octahedral tilt mode amplitudes dX;Mþ
3
;3

and dX;Rþ
4
;12 and increases with the octahedral distortion mode

amplitudes dX;Mþ
2
;3 and dX;Rþ

5
;12. Note that the mode ampli-

tudes dX;Rþ
4
;12 and dX;Rþ

5
;12 change VA/VB faster than dX;Mþ

2
;3

and dX;Mþ
3
;3 because they both control two basis modes

simultaneously. This is obvious when VA/VB is plotted as a

function of the two octahedral tilt mode amplitudes dX;Mþ
3
;3

and dX;Rþ
4
;12 in the absence of distortion (Fig. 4), in which the

curves in the dX;Rþ
4
;12 ¼ 0 and dX;Mþ

3
;3 ¼ 0 planes are the same

as the curves for dX;Mþ
3
;3 and dX;Rþ

4
;12 in Fig. 3.

The Xþ5 distortional mode is a special case in this respect. It

only appears in the four tilt systems that involve both in-phase

and out-of-phase tilts because it is associated with the X point

in the Brillouin zone. As a consequence its amplitude only

appears in product terms with other modes in the expression

for the volume ratio VA/VB and only in tilt systems a+b�b�

(Pnma), a+a+c� (P42/nmc), a0b+c� (Cmcm) and a+b�c�

(P21/m) (Tables 2h–k). Therefore, this mode alone does not

change the volume ratio VA/VB away from 5. Conversely, when

the amplitude of the Xþ5 mode in Pnma perovskite is zero, the

third-order terms in the expression for VA/VB are zero and the

expression reduces to the form discussed in x5.2, so that the

polyhedral volume ratio is increased by the other distortional

modes from that given by the tilts alone (Table 2h).

In real Pnma perovskites all of the symmetry-allowed

modes have non-zero amplitudes, and the effect of the

distortional modes on the value of the volume ratio VA/VB

depends on a subtle balance between the terms in the squares

of the distortion mode amplitudes dX;Mþ
2
;3 and dX;Rþ

5
;12 alone

and the third-order product terms. As an example of the more

common case in Pnma perovskites, we use LaCrO3 perov-

skites once more but at temperatures below the orthorhombic

to rhombohedral phase transition temperature at 533 K

(Hashimoto et al., 2000). The five mode amplitudes dX;Mþ
2
;3,

dX;Mþ
3
;3, dX;Rþ

4
;12, dX;Rþ

5
;12 and dX;Xþ

5
;1 were calculated with

ISODISTORT for the structures down to 295 K determined

by neutron powder diffraction (Oikawa et al., 2000). The

results plotted in Fig. 5 show that the two octahedral tilt-mode

amplitudes dX;Mþ
3
;3 and dX;Rþ

4
;12 are significantly larger than the
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Figure 4
Variation of VA/VB with octahedral tilt-mode amplitudes dX;Mþ

3
;3 and

dX;Rþ
4
;12 of the Pnma phase of LaCrO3 perovskite. The surface is the

VA/VB (dX;Mþ
3
;3, dX;Rþ

4
;12) expression for the Pnma structure given in Table

2(h).

Figure 5
Variation of the mode amplitudes dX;Mþ

2
;3, dX;Mþ

3
;3, dX;Rþ

4
;12, dX;Rþ

5
;12 and

dX;Xþ
5
;1 with temperature in the Pnma phase of LaCrO3 perovskite.



three octahedral distortion mode amplitudes dX;Mþ
2
;3, dX;Rþ

5
;12

and dX;Xþ
5
;1. The dX;Mþ

3
;3, dX;Rþ

4
;12 and VA/VB values calculated

from the X-anion coordinates of Pnma LaCrO3 structures

over the experimental temperature range are shown in the

coordinate frame in Fig. 4. An enlargement and re-alignment

of this surface in Fig. 6 shows that the experimental volume

ratios are very close (typically within 0.002, but as much as

0.03 for the example of extremely distorted MgSiO3 perov-

skite), but smaller than the ratios calculated from the contri-

butions of the tilt modes alone. The fact that the actual volume

ratios fall below the surface calculated for tilts alone is a

typical case for the perovskites in this class, and indicates that

the contribution of the terms in the triplets in the denominator

is positive and larger in magnitude than the sum of the terms

in the squares of dX;Mþ
2
;3 and dX;Rþ

5
;12. The opposite case occurs

when there is a significant Mþ2 distortion, as typically occurs in

compounds with Jahn–Teller distorted octahedra such as

LaMnO3 (e.g. Rodriguez-Carvajal et al., 1998). In these cases

the term in the square of dX;Mþ
2
;3 outweighs the triplet terms

and the true VA/VB becomes slightly larger (of the order of

0.01) than the value calculated from the amplitudes of the tilt

modes alone.

Therefore, even in the presence of significant amplitudes of

the distortional modes the octahedral tilt mode amplitudes

play a dominant role in changing VA/VB because the distor-

tional modes contribute at most a change of the order of 0.03

to the volume ratio, or typically less than 5% of the difference

of VA/VB from 5. This is in agreement with the observation

that the majority of 761 experimental Pnma structures have

VA/VB between 4.4 and 4.8 determined mostly by the tilting

(Avdeev et al., 2007). Returning to the example of Pnma

LaCrO3 perovskite, we also note that it also displays the

general trend that as temperature increases both the distor-

tional and tilt modes show a decrease in amplitude and the

deviation of the true VA/VB value from that calculated for the

tilts alone becomes smaller (Fig. 6). So, as in real Imma

perovskites, for many practical purposes the contributions to

the volume ratio from the distortional modes can be

neglected.

6. Conclusions

We have used the computer programs ISOTROPY and

ISODISTORT to decompose perovskite structures in terms of

symmetry-adapted displacive modes following the metho-

dology of Knight (2009). With a new definition, d0 = d/ap, the

mode amplitudes only reflect the internal degrees of freedom

of the structure, and not the influence of the deformation of

the cell parameters of the supercell away from those of the

cubic parent structure. The polyhedral volume ratio VA/VB

that defines whether a perovskite structure becomes more or

less distorted with changes in pressure or temperature has

been defined in terms of the mode amplitudes involving the X

anions for each of 15 tilt systems. These expressions have been

reduced to a simple universal form [equation (6)] applicable to

all tilt systems by neglecting the octahedral distortion modes.

VA/VB has also been obtained as a function of the tilt angles

about the three pseudo-cubic axes [equation (8)]. The domi-

nance of octahedral tilt modes over the distortional modes

found in real perovskites justifies the use of the simple

uniform expression for most cases.
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